Numerical Simulation of Glass Fiber Manufacturing Processes: Overview and Challenges

Bruno Purnode, Pat Prescott, Jong Han

14th international Seminar on Furnace Simulation, Design & Operations
Velke Karlovice, Czech Republic – June 2017

Copyright © 2017 Owens Corning. All Rights Reserved
Owens Corning at a Glance

- Founded in 1938, an industry leader in glass fiber insulation, roofing and glass fiber reinforcements
- 2016 sales: $5.7 billion
- 15,000 employees in 26 countries
- Fortune® 500 company for 63 consecutive years
- Component of Dow Jones Sustainability World Index
- Three powerful businesses
 - Insulation
 - Roofing
 - Composites
Presentation Outline

• Technologies:
 • Insulation Glass Fiber
 • Reinforcement Glass Fibers

• Different steps:
 – Glass Melting & Conditioning
 – Glass Forming
 – Downstream processes

• Simulation Results Management

• Concluding Remarks
Fiberglass Insulation Process Overview

Batch Storage and Mixing

Channel

Forehearth

Binder Application

Furnace

Fiberizing

Forming

Curing

Fabrication

the color PINK is a registered trademark of Owens Corning
Reinforcement Glass Fiber Manufacturing Process

Batch

Furnace

Forehearth

Sizing

Winder

Front-end

Delivers molten glass

To Packaging

Melts raw materials

Fiber glass forming

Copyright © 2017 Owens Corning. All Rights Reserved
Forming & Size Application

Fiber forming

Sizing Application

=> Glass quality is key

Copyright © 2017 Owens Corning. All Rights Reserved
Fiberglass Reinforcement Products

Fiberglass filament → Roving → Fabric → Final Applications

Copyright © 2017 Owens Corning. All Rights Reserved
- Raw materials react/melt to make glass
- Complex physics & chemistry
Glass Melting Furnace and Front End

- High-cost process
 - Capital investment
 - Operating expenses
- Important to operate carefully and efficiently
 - Avoid damage and extend life
 - Assure complete melting, fining, and conditioning
- Numerical simulations assist design and operation
Modeling Capabilities

- Temperature contours & local values
- Electric Joule Heating – distribution, voltage potential, current
- Flow velocities and shear rates
- Batch position
- Particle residence times and other KPIs
- Sand dissolution rates
- Bubble paths

- Heat fluxes – conduction, convection, radiation
- Contours of unburned fuel
- Turbulence
- Energy input – fuel & electric
- Superstructure heat losses

RESIDENCE TIME DISTRIBUTION

“SHORT CIRCUIT” PATHS

AVERAGE PATHS
Verification & Validation efforts

- Temperature values
 - Combustion space
 - Glass

- Tracer Tests

Cumulative Residence Times distribution

Predicted times are in good agreement with tracer trial measurements.

\[R^2 = 92.3\% \]
Example: Electric Boost and Glass Recirculations

PAST SITUATION:

Imbalance caused by electrode failures

Calculated Mixing index <1

Clearly more glass recirculation on the right

=> Performance issues

NEW SITUATION:

Perfect Balance after recabling

Calculated Mixing index >2

Glass flow recirculation more balanced Left/Right !!!

=> Better glass mixing improves furnace performance
Valuable Insights from Furnace & Front-end Simulations

- Melting Furnace
 - Profiling burners, E-boost, bubblers, etc.
 - Calculating & comparing residence times and other performance indices

- Front-end
 - Identifying cold, stagnant zones (risk of devit growth)
 - Assessing the effects of pull rate changes
 - Thermal disturbances and transient effects
Challenges of Furnace Numerical Modeling

- Validation data & accuracy
- Material properties & aging
- Process Changing Physical Properties
 - Batch materials to glass
- Improved constitutive models
 - Foam, refractory erosion

Balance details with computation time

Still need a high level of expertise to use such tools...
Fiber Forming

Glass from Forehearth

Refractories

Bushing

Tip plate

Fibers

Bushing:
- Made of precious alloy
- electrically energized to control temperature

Fiber break @ forming leads to process interruption

Copyright © 2017 Owens Corning. All Rights Reserved
Fiber Forming physics

- Combination of fluid dynamics and heat transfer
 - Surface tension and viscosity = f(T)
 - Radiation and convection heat transfer

![Diagram of fiber forming process]
Balancing Accuracy and Cost

Cost = human hours & computational time
Accuracy = geometrical details, physics & chemistry

Copyright © 2017 Owens Corning. All Rights Reserved
Forming Position Simulations

- Rich in Physics
 - Complicated flow patterns
 - Multi-phase
 - Water sprays
 - Coupled & interacting
 - Complex heat transfer

- Different length scales
 - Forming Tunnel, Forehearth, Positions
 - Bushing, tip plate, fins, & tips
 - Fibers

POST-PROCESSING

- Air entrainment into fiber fan
- Temperature at applicator
- Moisture concentration (vapor and liquid)
Temperatures at the Applicator

Validation Metric
Forming Position - Challenges

- Validation
 - Limited quantitative data
 - Qualitative – flow pattern descriptions

- Uncertain performance indices
 - How air flow relates to fiber breaks?
 - How to assess and compare configurations?

- Full forming tunnel simulations require very large computational resources
Drying Oven Simulations

- Drying time
- Uniformity
 - Over-dried packages
 - Under-dried packages
- Product Quality
- Energy Efficiency

Wound fiberglass packages on carriers ready to enter drying oven

Configurations can vary
- Alternative 2 has lower average but *higher minimum*
- Also, *less pkg-to-pkg variation*

CHALLENGES

- Validation – mainly qualitative
 - Full oven
 - Complete drying cycle

 Limited by opportunities

 Limited by computational resources
Summarizing CFD Simulations in Glass Fiber Manufacturing

- Several process applications
- Complex systems with coupled transport phenomena and interacting materials/zones/domains

Challenges

- Characterizing materials and interactions
- Balancing geometrical fidelity with computational efficiency
- Post-processing to make sound operational and/or business decisions
- Obtaining sufficient and/or accurate validation data
Failure during early stage of furnace campaign
- Large crack → 2 pieces

Transient thermal conditions
- Stress build-up during heat up
- Introduction of cold batch causing radiative heat loss
- Burner air (without fuel) leading to sudden cooling

Complex shape imposing stress concentration
Need to Manage Modeling & Simulation Activity and Data

- Ever larger & complex simulations
- More participants in simulations & Multi-disciplinary Engineering Roles
 - Modelers & Analysts
 - Designers & Plant Support Engineers
 - R&D Engineers
- Need for organizing, scheduling, and prioritizing simulations
- Sharing simulation results across the globe
Numerous Advantages identified

- Facilitates collaboration
 - Eliminates extra copies of modeling files
 - Keeps various data files “in sync”
 - Geometry
 - Mesh
 - Model data (i.e. properties, bc’s, etc)
 - Post-processing reports

- Searching
 - Common repository

- Recycling/Resurrecting Data
 - Model data
 - Quickly launch a comparative study to help decision-making

- Data Security
Conclusions

- Modeling is a critical tool in design & operations
 - Furnace
 - Frontend
 - Fiber forming & downstream processes

- Challenges of Numerical Modeling
 - Validation
 - Physical Properties
 - e.g. Batch materials
 - Need Improved models
 - Foam, refractory erosion

- Simulation Data Management a must have
Acknowledgments

- P. Prescott, M. Korwin –Edson, Josh Rowe, Pete McGinnis & Jong Han for feedback and help with presentation content
- Owens Corning management for allowing to present at this 14th international Seminar on Furnace Simulation, Design & Operations.